首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1588篇
  免费   30篇
  国内免费   6篇
化学   1184篇
晶体学   9篇
力学   24篇
数学   183篇
物理学   224篇
  2022年   8篇
  2021年   25篇
  2020年   21篇
  2019年   25篇
  2018年   18篇
  2017年   11篇
  2016年   41篇
  2015年   29篇
  2014年   19篇
  2013年   86篇
  2012年   84篇
  2011年   109篇
  2010年   52篇
  2009年   53篇
  2008年   93篇
  2007年   73篇
  2006年   91篇
  2005年   67篇
  2004年   70篇
  2003年   68篇
  2002年   50篇
  2001年   24篇
  2000年   15篇
  1998年   22篇
  1997年   13篇
  1996年   16篇
  1995年   11篇
  1994年   13篇
  1993年   13篇
  1992年   14篇
  1991年   7篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   15篇
  1985年   39篇
  1984年   29篇
  1983年   17篇
  1982年   30篇
  1981年   19篇
  1980年   22篇
  1979年   30篇
  1978年   15篇
  1977年   13篇
  1976年   15篇
  1975年   19篇
  1974年   14篇
  1973年   8篇
  1972年   7篇
  1970年   7篇
排序方式: 共有1624条查询结果,搜索用时 15 毫秒
101.
102.
103.
The dispersion of Nafion ionomer particles and Pt/C catalyst aggregates in liquid media was studied using both ultra-small-angle X-ray scattering (USAXS) and cryogenic TEM. A systematic approach was taken to study first the dispersion of each component (i.e., ionomer particles and Pt/C aggregates), then the combination of the components, and last the catalyst ink. Multiple-level curve fitting was used to extract the particle size, size distribution, and geometry of the Pt/C aggregates and the Nafion particles in liquid media from the scattering data. The results suggest that the particle size, size distribution, and geometry are not uniform throughout the systems but rather vary significantly. It was found that the interaction of each component (i.e., the Nafion ionomer particles and the Pt/C aggregates) occurs in the dispersion. Cryogenic TEM was used to observe the size and geometry of the particles in liquid directly and to validate the scattering results. The TEM results showed excellent agreement.  相似文献   
104.
Iron phosphates (FePO(4)) are among the most promising candidate materials for advanced Li-ion battery cathodes. This work reports upon a combined nuclear magnetic resonance (NMR) experimental and periodic density functional theory (DFT) computational study of the environments and electronic structures occurring in a range of paramagnetic Fe(III) phosphates comprising FePO(4) (heterosite), monoclinic Li(3)Fe(2)(PO(4))(3) (anti-NASICON A type), rhombohedral Li(3)Fe(2)(PO(4))(3) (NASICON B type), LiFeP(2)O(7), orthorhombic FePO(4)·2H(2)O (strengite), monoclinic FePO(4)·2H(2)O (phosphosiderite), and the dehydrated forms of the latter two phases. Many of these materials serve as model compounds relevant to battery chemistry. The (31)P spin-echo mapping and (7)Li magic angle spinning NMR techniques yield the hyperfine shifts of the species of interest, complemented by periodic hybrid functional DFT calculations of the respective hyperfine and quadrupolar tensors. A Curie-Weiss-based magnetic model scaling the DFT-calculated hyperfine parameters from the ferromagnetic into the experimentally relevant paramagnetic state is derived and applied, providing quantitative finite temperature values for each phase. The sensitivity of the hyperfine parameters to the composition of the DFT exchange functional is characterized by the application of hybrid Hamiltonians containing admixtures 0%, 20%, and 35% of Fock exchange. Good agreement between experimental and calculated values is obtained, provided that the residual magnetic couplings persisting in the paramagnetic state are included. The potential applications of a similar combined experimental and theoretical NMR approach to a wider range of cathode materials are discussed.  相似文献   
105.
The absolute configurations of 2-cyclohexenone cis-diol metabolites resulting from the biotransformation of the corresponding phenols have been determined by comparison of their experimental and calculated circular dichroism spectra (TDDFT at the PCM/B2LYP/Aug-cc-pVTZ level), optical rotations (calculated at the PCM/B3LYP/Aug-cc-pVTZ level) and by stereochemical correlation. It is found that circular dichroism spectra and optical rotations of 2-cyclohexenone derivatives are strongly dependent on the ring conformation (M or P sofa S(5) or half-chair), enone non-planarity and the nature and positions of the hydroxy and alkyl substituents. The effect of non-planarity of the enone chromophore, including the distortion of the C=C bond, is determined for the model structures by TDDFT calculations at the PCM/B2LYP/6-311++G(2d,2p) level. Non-planarity of the C=C bond in the enone chromophore is commonly encountered in 2-cyclohexenone derivatives and it is a source of significant rotatory strength contribution to the electronic circular dichroism spectra. It is shown that the two lowest-energy transitions in acrolein and 2-cyclohexenone and its derivatives are n(C=O)-π(C=O)* and π(C=C)-π(C=O)*, as expected, while the shorter-wavelength (below 200 nm) transitions are of more complex nature. In 2-cyclohexenone and its alkyl derivatives it is predominantly a mixture of π(C=C)-π(C=C)* and π(C=C)-σ* transitions, whereas the presence of hydroxy substituent results in a dominant contribution due to the n(OH)-π(C=O)* transition. A generalized model for correlation of the CD spectra of 2-cyclohexenones with their structures is presented.  相似文献   
106.
Benzene-cis- and trans-1,2-dihydrodiols undergo acid-catalyzed dehydration at remarkably different rates: k(cis)/k(trans) = 4500. This is explained by formation of a β-hydroxycarbocation intermediate in different initial conformations, one of which is stabilized by hyperconjugation amplified by an aromatic no-bond resonance structure (HOC(6)H(6)(+) ? HOC(6)H(5) H(+)). MP2 calculations and an unfavorable effect of benzoannelation on benzenium ion stability, implied by pK(R) measurements of -2.3, -8.0, and -11.9 for benzenium, 1-naphthalenium, and 9-phenanthrenium ions, respectively, support the explanation.  相似文献   
107.
The bimetallic NiSn2 complex Ni(SnBu3t)2(CO)3, 1, was obtained from the reaction of Ni(COD)2 and Bu3tSnH and CO. The reaction of Co2(CO)8 and Bu3tSnH afforded the bimetallic Co–Sn complex Co(SnBu3t)(CO)4, 3. Compound 3 was also obtained from the reaction of Co4(CO)12 and Bu3tSnH but in a lower yield. Both compounds 1 and 3 were characterized by single crystal X-ray diffraction, and possess trigonal bipyramidal geometries around the transition metal centre with two and one stannyl ligands, respectively.  相似文献   
108.
The reverse micelle method was used for the reduction of a tin (Sn) salt solution to produce metallic Sn nanoparticles ranging from 85 nm to 140 nm in diameter. The reverse micellar system used in this process was hexane-butanol-cetyl trimethylammonium bromide (CTAB). The diameters of the Sn nanoparticles were proportional to the concentration of the aqueous Sn salt solution. Thus, the size of the Sn nanoparticles can easily be controlled, enabling a simple, reproducible mechanism for the growth of silicon nanowires (SiNWs) using plasma-enhanced chemical vapour deposition (PECVD). Both the Sn nanoparticles and silicon nanowires were characterised using field-emission scanning electron microscopy (FE-SEM). Further characterisations of the SiNW's were made using transmission electron microscopy (TEM), atomic force microscopy (AFM) and Raman spectroscopy. In addition, dynamic light scattering (DLS) was used to investigate particle size distributions. This procedure demonstrates an economical route for manufacturing reproducible silicon nanowires using fine-tuned Sn nanoparticles for possible solar cell applications.  相似文献   
109.
A persistent triptycenyl sulfenic acid is used as a model for cysteine-derived and other biologically relevant sulfenic acids in experiments which define their redox chemistry. EPR spectroscopy reveals that sulfinyl radicals are persistent and unreactive toward O(2), allowing the O-H bonding dissociation enthalpy (BDE) of the sulfenic acid to be readily determined by equilibration with TEMPO as 71.9 kcal/mol. The E° (RSO?/RSO(-)) and pK(a) of this sulfenic acid are also reported.  相似文献   
110.
The phase angle component of the complex frequency response of a sonar system operating near transducer resonance is usually distorted. Interpretation and classification of the received sonar signal benefits from the preservation of waveform fidelity over the full bandwidth. A calibration process that measures the phase response in addition to the amplitude response is thus required. This paper describes an extension to the standard-target calibration method to include phase angle, without affecting the experimental apparatus, by using dual-frequency transmission pulses and frequency-domain data processing. This approach reduces the impact of unknown range and sound speed parameters upon phase calibration accuracy, as target phase is determined from the relationship of the two frequency components instead of relying on a local phase reference. Tungsten carbide spheres of various sizes were used to simultaneously calibrate the amplitude and phase response of an active sonar system in a laboratory tank. Experimental measurements of target phase spectra are in good agreement with values predicted from a theoretical model based upon full-wave analysis, over an operating frequency of 50-125 kHz.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号